
gR: A GPU-based Router

 Priya Sundaresan, Sripriya Venkateshprasad, Yamini Muralitharan and Ranjani Parthasarathi

Department of Information Science and Technology

Anna University

Chennai, India

Abstract—With the growing internet traffic and complexity of

packet processing task, the throughput of routers is affected. Also

modern routers need to provide additional services like security,

QOS which further adds to the complexity. These issues can be

addressed with the massive parallel computing capability of

graphic processors. In this paper, we offload two of the most

computationally intensive tasks namely lookup and two-key

IPSec to CUDA-enabled GPU. The execution time is reduced by

exploiting the inherent parallelism in packet processing tasks.

Finally, we have analyzed the performance variations and have

found that modern graphic cards can be effectively used to speed

up router operations.

I. INTRODUCTION

A substantial increase of traffic in today’s Internet has
posed a great challenge for complex packet processing tasks.
Commercial hardware like FPGA, NPU (Network Processing
Unit), TCAM are proposed to meet the demand. But these
solutions may not be cost-effective and easy to manage because
they require specific hardware and configuration.

This work approaches the problem differently by offloading
network packet processing tasks to GPGPUs. GPU’s massive
parallel processing power has been used in various application
domains like cryptography, computer vision, weather
forecasting etc. Network processing is another domain large
scope for parallelism as it has large amount of packets to be
processed with least or no dependency between them. Further,
the scalability and easy programmability of modern GPUs can
help in development of high-speed cost-effective router.

This paper aims at exploring effective implementation of
network processing task on a CUDA-enabled GPU. We focus
on accelerating two operations of router: IP lookup which is
considered as representative task of normal router operation
and two-key IPSec that is essential for deep packet inspection
on edge-routers.

This paper is organized as follows: Section 2 discusses the
previous work carried out. Section 3 gives the implementation
details of lookup and IPSec. Section 4 delivers the performance
analysis and Section 5 concludes with scope for future work on
GPUs.

II. RELATED WORK

Many works have been carried out to improve the
performance of lookup and IPSec. The primary technique used
in lookup is Longest Prefix Match (LPM) and are usually
implemented with trie data structure. In case of IPSec,
cryptographic algorithms form the basis for providing security.

A. Lookup

Several software and hardware related solutions have been
proposed for LPM algorithms for efficient IP lookup. One of
the idea proposed by Waldvogel [16] is binary search on prefix
length using hash tables. Dharmapurikar et al. [3] proposed the
idea of using bloom filters for lookup. The destination address
is hashed to find which bloom filter it belongs to and the
corresponding prefix entries are traversed to find the next hop.
Other techniques for finding the longest matching prefix are
path compression [10], prefix expansion [15], level
compression [11] to reduce the worst case memory access
times per lookup. Path compression technique for lookup
involves reducing the skip count (number of non-terminating
nodes, traversed) while traversing the trie for finding a match.
Prefix expansion technique operates by extracting multiple bits
at a time and using them as an index of array pointers to
traverse the child nodes. In Level Compression tries, whenever
a trie node does not have terminal nodes for the next t levels,
the fan-out trie is compressed into a single array of size 2^t and
t bits are used to index into this array of pointers to nodes. All
these trie-based scheme suffers from disadvantage of choosing
a child node at each level of traversal (maximal dependency on
parent node). This makes it difficult to implement these
schemes in a parallelized manner. Also, these trie-based
algorithms were particularly designed for 32-bit v4 addresses
and don’t scale to 128-bit v6 addresses.

Several hardware related solutions have also been proposed
like CAMs, FPGAs, GPUs. CAM based lookup schemes
proposed include prefix segregation[9],single-match
technique[6], load balancing multi-chip technique [8] and
exploitation of inherent prefix properties [12]. Hoang Le et al.
[4] and Zoran Chicha et al. [17] discuss how FPGAs are used
in providing better lookup performance. Generally CAMs are
much slower, more expensive; several orders of magnitude
smaller than conventional memory and FPGAs are expensive
and sophisticated. So GPUs are better suited for cost-effective
designing of PC-based routers. Jin Zhao et al., Sangjin Han et
al. and Shuai Mu et al. [7,13,14] discuss several lookup
schemes done using GPU. Some of these techniques [7] are not
memory efficient. To achieve better memory usage and
performance we implement bloom filter technique (minimum
dependency, better parallelization) on CUDA enabled GPU.

B. IPSec

Several solutions have been proposed for the
implementation of complex cryptographic algorithms like AES
and DES on parallel processing architectures like GPU and
FGPA [2]. But implementing these algorithms itself in parallel

(0,0) (0,1) (0,2) (0,n)

(1,0) (1,1) (1,n)

(m,0) (m,1) (m,2) (m,n)

Block 0

Block 1

Block n

B

L

O

O

M

F

I

L

T

E

R

S

INPUT PACKETS

2D Thread

Dim X

Dim Y

as in the context of two-key IPSec, is still an open area of
research. To our knowledge, this is the first paper to discuss
two-key IPSec on GPU

III. PROPOSED WORK

In this work, we use NVidia GeForce GT220. It has 48
cores with compute capability 1.2. Appropriate algorithms have
been chosen to exploit parallel computing ability of CUDA
GPU.

A. IP lookup

Bloom filters are efficient data structures that can represent
large amount of data items with relatively less memory space.
The storage and search operations can be done in O(1). Hence,
bloom filters are good candidates for lookup. In this work we
use bloom filters and perform parallel lookup on prefixes to
find Longest Prefix Match (LPM). The bloom filter
construction and parallelization of lookup on CUDA are
discussed below.

1) Bloom Filter Construction: The routing table entries are

grouped by prefix length and bloom filters are constructed for

each length. The optimal size of bloom filter and the number

of hash functions required are computed using the following

formulae,
 M = -2 * N * ln(P) (1)

 K = 0.7 * M / N (2)

where,

N – Maximum number of data items

P – Allowed false positive rate

M – Bloom Vector size

K – Optimal number of hash functions

Instead of using independent hash functions, which are
computationally expensive, we use single hash function to
simulate hash values without significance loss in asymptotic
false positive probability. The math behind this technique, as
described in [1], is

 (3)

where, and are the initial hash values and .

These hash values are used as indices to set bloom vector.
Since only two values (0 and 1) are used to represent data, we
adopt bitwise storage for effective memory utilization.

2) Parallelization on CUDA: Here, we have briefed about

how parallelization can be done on CUDA. Important

considerations to be made on mapping to CUDA are as

follows: Thread organization and Memory organization.

 Thread organization - CUDA architecture is organized
as a collection of grids, blocks and threads. A grid is a
collection of blocks. A block is a collection of threads.
During implementation, a decision has to be made on
how these are organized to obtain peak performance.

 Memory Organization - CUDA memory architecture
has different types of memory like constant, global,
shared etc. During implementation, suitable memory
has to be chosen for storing the data, by considering
the pros and cons of each memory.

Execution of a CUDA program involves launching kernels. A

kernel is a piece of code which is callable from host and

executed on device.

In lookup, parallelism is be achieved at data-level and task-

level. The incoming packets are handled in parallel by the y-

dimension threads, which accounts to data-level parallelism.

For each packet, the x-dimension decides the bloom filter to

be queried for prefix match, thus accounting to task-level

parallelism. This facilitates communication between threads in

same warp to obtain LPM. The next hop is obtained by

traversing the entries in table corresponding to longest prefix

length. Fig. 1 shows block launch with 2-D threads.

Figure 1. Block launch for lookup

Memory optimization: Bloom vectors are loaded in read-

only constant memory for fast access. Further, we use bitwise

storage of bloom vector as mentioned above, to reduce

memory usage.

B. Two-key IPSec

IPSec aims at providing security and privacy by encrypting
packets. It employs several cryptographic algorithms for this
purpose. In the scenario considered here, we need to perform
partial decryption of two-key IPSec encrypted packets to allow
deep packet inspection. We restrict ourselves to the
implementation of AES and DES decryption algorithms.

AES and DES operating on large blocks of data are
computationally intensive and largely byte-parallel. At a high
level, these decryption algorithms take in a 128-bit key or 64-
bit key in case of AES and DES respectively and a variable
length message. They split the message into 128-bit blocks/64-
bit blocks, and perform the decryption steps on these bit blocks
independently.

 Block 0 Block 1
. . . .

. . . .

.

Block n

Block with 2D

threads

B0

B1

Bn

. . .

P0 P1 . . . Pn

128 bits /

64 bit

blocks of

enciphered

text

Packets

Figure 2. View of block for two-key IPSec

This naturally leads to a highly parallel GPU
implementation. The GPU threads perform the AES and DES
decryption functions in parallel. This is important in the context
of IPSec, as different packets are encrypted with different
algorithms. Each thread works on a subset of the packet data
(128/64 bit blocks), so there are no dependencies between
threads. Parallelization is depicted in Fig. 2, where packets are
handled in parallel, with each y-dimension thread handling a
packet and its corresponding decryption algorithm. The x-
dimension threads handles byte blocks within a packet in
parallel, thus providing algorithm-level parallelization.

The Key expansion process of both these algorithms is
inherently serial. So, the keys are pre-computed and are then
applied to the threads.

To optimize global memory access, it is necessary to
coalesce data accesses together to allow the GPU to perform
wide memory reads. Since all the threads access the data from
global memory before processing the data, it is easy to order
the accesses such that the most efficient usage or the memory
bus is achieved. Another optimization that is useful is the use
of constant memory. Both AES and DES use several tables to
perform lookups. Since these tables are constant and common
between threads, we can load them into the constant memory of
the GPU. This memory is cache-backed and the cache can
accommodate all of the table data. Once the data is in the
cache, there is little penalty in accessing it again

IV. PERFORMANCE

The implementation is done on Nvidia GT220 graphics
card which has 48 cores. We have varied the number of threads
and blocks and have evaluated the performance. By varying
these parameters, the best combination for optimal
performance of these operations is identified. The experiment
is conducted with 10K router entries obtained from IPV4 BGP
table. This work is scalable to IPV6 addresses also. The time
taken for different block-thread combinations for 1, 20,000
packets is shown in Table 1.

From the speed-up graph shown in Fig. 3, it can be seen
that the peak value is obtained for 12-2048 blocks-thread

combination. In case of IPSec, it can be inferred that the peak
performance is achieved for 6 blocks and 256 threads as shown
in Fig.4

TABLE I. LOOKUP PERFORMANCE FOR 1, 20,000 PACKETS

Block 2D-threads Time(ms) Speed-up

6 1024 2.789 1

2048 2.006 1.39

4096 2.767 1.01

12 1024 3.614 0.77

2048 1.123 2.48

4096 1.346 2.07

18 1024 3.155 0.88

2048 2.267 1.23

4096 2.112 1.32

Figure 3. Speed-Up for Lookup Performance

Figure 4. IPSec Performance

It is to be noted from Fig. 4 that though the increase in the
number of blocks from 6 to 100 leads to increase in the number

of packets being processed in parallel, the overall execution
time increases as opposed to an expected decrease. This can be
supported by the fact that, increase in the number of blocks
poses block scheduling overhead thus having adverse effects
on the execution time.

A close look on both graphs indicates that optimal
execution time is achieved at a point where the resources are
utilized effectively.

The lookup performance is compared against AMD athlon
with 512M DDR33[5].Incase of AMD athlon, for maximum of
753 entries and 3812.70KB the time taken for lookup is 0.744
sec. But our performance on GPU yields 0.0011 sec for 10K
entries and 3988KB of data. From the comparison discussed
above, it can be seen that GPU’s parallel computing capability
results in better performance. So, GPUs can be used for
designing software routers with better throughput.

V. CONCLUSION

This paper supports the idea that GPUs can be used for
designing cost-effective high-speed PC-based routers. The
work can be extended for other router operations. Our work
was done using a single GPU. Future work can extend this to
multiple GPUs. The issues with current GPUs are being
addressed by new and upcoming architectures like Nvidia’s
Fermi. More focus can be given for deploying network
operations on these latest GPUs.

REFERENCES

[1] A. Kirsch, M. Mitzenmacher, “Less hashing, same performance:
Building a better Bloom filter,” Random Struct. Algorithms, col. 33, pp.
187-218, Sept.2008.

[2] C. Fiorese, C. Budak, “AES on GPU: a CUDA Implementation,” In
CHES, pp 209–226, 2007.

[3] S. Dharmapurikar , P. Krishnamurthy, D. E. Taylor, "Longest prefix
matching using bloom filters," Networking, IEEE/ACM Transactions,
vol.14, no.2, pp. 397- 409, April 2006.

[4] H. Le, W. Jiang, and V. K. Prasanna, “A SRAM-based Architecture for
Trie-based IP Lookup Using FPGA,” Proc. Sixteenth International

Symposium on Field-Programmable Custom Computing Machines
(FCCM '08), IEEE Computer Society, Washington, DC, USA, 2008, pp.
33-42.

[5] H. Ma, X. Deng, Y. Ma, Z. Li, “Divide-and-Conquer: A Scheme for
IPv6 Address Longest Prefix Matching,” in IEEE conference
publication, June-2006.

[6] Jinsoo Kim and Junghwan Kim, ”An efficient IP lookup architecture
with fast update using single-match TCAMs,” Proc. Sixth International
conference on Wired/wireless internet communications (WWIC'08),
Berlin, Heidelberg, 2008, pp. 104-114.

[7] J. Zhao, X. Zhang, X. Wang, and X. Xue, “Achieving O(1) IP lookup on
GPU-based software routers,” SIGCOMM Comput. Commun. Rev. 40,
August 2010, pp. 429-430.

[8] K. Zheng, C. Hu, H. Lu, B. Liu, "An Ultra High Throughput and Power
Efficient TCAM-Based IP Lookup Engine," Tsinghua University,
Beijing, China, IEEE INFOCOM 2004.

[9] M. J. Akhbarizadeh, M. Nourani, C. D. Cantrell, "Prefix Segregation
Scheme For a TCAM-Based IP Forwarding Engine," University of
Texas,Dallas,IEEE 2005.

[10] D.R. Morrison, "PATRICIA--Practical Algorithm to Retrieve
Information Coded in Alphanumeric," J. ACM, vol. 15, no.4, pp. 514-
534,Oct.1968.

[11] S. Nilsson and G. Karlsson, "IP-Address Lookup Using LC-Tries,"
IEEE J. SAC, vol. 17, no. 6, June 1999, pp. 1083–1092.

[12] V.C. Ravikumar and R. N. Mahapatra ," TCAM Architecture For IP
Lookup Using Prefix Properties," Texas A&M University,IEEE 2004.

[13] S. Han, K. Jang, K. Park, S. Moon,"PacketShader: A GPU-Accelerated
Software Router," SIGCOMM’10, August 30–September 3, 2010, New
Delhi, India.

[14] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and S. Zhang, “IP routing
processing with graphic processors,” Proc. Conf. on Design, Automation
and Test in Europe (DATE '10), European Design and Automation
Association, 3001 Leuven, Belgium, 2010, pp. 93-98.

[15] V. Srinivasan. and G. Varghese, "Fast Address Lookups Using
Controlled Prefix Expansion," ACM Transactions on Computer
Systems, Vol. 17,No. 1, February 1999, pp. 1–40.

[16] M. Waldvogel, "Fast longest prefix matching: Algorithms, analysis and
applications," Ph. D. Thesis, Swiss Federal Institute of
Technology,Zurich, 2000.

[17] Z. Chicha, L. Milinkovic, A. Smiljanic , "High Performance Switching
and Routing,FPGA Implementation of Lookup Algorithms," Belgrade
University, 12th International Conference,IEEE 2011.

